
Abstract 

Leishmaniasis is a devastating parasitic disease of medical and veterinary importance that is endemic across 

the tropics. It can be either disfiguring or lethal in its most severe forms and it lacks appropriate treatment. Several 

species of the protozoan parasite Leishmania can cause Leishmaniasis in human, which further complicates the 

development of new therapeutics because the different species are genotypically and phenotypically diverse. We 

have previously reported the anti-protozoal activity of 4-substituted 2-(1H-pyrrolo [3, 2-c] pyridin-2-yl) propan-2-ols 

against the related protozoan, Trypanosoma cruzi. Herein we report the biological activity of some of these compounds 

against intracellular amastigotes of three of the most clinically relevant Leishmania species: L. amazonensis, L. 

braziliensis and L. infantum. Four of the tested compound showed activity against the three Leishmania species, 

albeit with varied potency. The compounds were also cytotoxic to the human host cells at higher concentrations. A 

molecular modeling study suggested that these compounds are capable of binding to the ADP site and thus inhibit 

the leishmanial nucleoside diphosphate kinase (NDK). These results show that 4-substituted 2-(1H-pyrrolo [3, 2-c] 

pyridin-2-yl) propan-2-ols may potentially become chemical entities with broad-spectrum anti-leishmanial activity. 
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Introduction 

Leishmaniasis is a parasitic disease caused by kinetoplastid 

protozoan parasites of the genus Leishmania. About 12 million people 

are currently infected with Leishmaniasis [1] in 98 countries [2]. 

According to the World Health Organization, 2 million new cases [2] 

and between 20 and 30 thousand deaths occur each year [3]. In addition, 

approximately 200 million people in Asia, Africa, Central and South 

America and southern Europe live in areas where the disease is common 

[2,4]. The disease can present several clinical manifestations which range 

from skin lesions (Cutaneous Leishmaniasis – CL) and mucous ulcers 

(Mucocutaneous Leishmaniasis – MCL) to systemic visceral organ 

damage (Visceral Leishmaniasis – VL) [5,6]. Cutaneous Leishmaniasis 

is the most common form, which causes open sores to develop at the 

sites of the sand-fly bites. These open sores heal in 6 to 18 months, 

leaving behind severe scars [2,5]. Diffuse cutaneous Leishmaniasis 

produces lepromatous type lesions disseminated across the skin and 

can be more difficult to heal [2]. Mucocutaneous Leishmaniasis is 

characterized by damage to the mucosal membranes of the face and 

a profound inflammatory response, which can lead to the erosion of 

the nostrils and the mouth in particular [2,5]. Visceral Leishmaniasis, 

also known as kala-azar (‘black fever’) is the most severe form and is 

potentially fatal if untreated. Its manifestation includes damage to 

the spleen (splenomegaly) and liver (hepatomegaly) [5]. Infections in 

humans are caused by more than 20 species of Leishmania. Visceral 

disease is usually caused by Leishmania donovani or L. infantum, but 

occasionally these species may cause other forms of the disease, whereas 

cutaneous forms of Leishmaniasis are caused by more than 15 species of 

Leishmania, including L. amazonensis, L. braziliensis and L. major [2]. 

Because there are no vaccines for Leishmaniasis, the main strategy to 

control the disease is to treat infected individuals. However, the current 

arsenal of anti-leishmanials, which includes pentavalent antimonials, 

amphotericin B, paramomycin and miltefosine, is limited and has 

several disadvantages such as toxicity, variable efficacy regarding 

different species and geographic regions, requirements for parenteral 

administration, lengthy treatment regimens and the emergence of 

drug resistance [5]. Therefore, the identification of new and active 

compounds is urgent in order to develop new, safe and efficacious 

candidates for anti-leishmanial chemotherapy. In this context, new 

and established pharmacophores, based on synthetic and natural 

product chemistry, are being identified through improved screening 

technologies [2]. We recently reported the synthesis and evaluation of 

the biological activity of a library of 16 1H-pyrrolo [3, 2-c] pyridines 

(5-azaindoles), specifically 4-substituted 2-(1H-pyrrolo [3, 2-c] 

pyridin-2-yl) propan-2-ols (of which 11, 1–11, are shown in Figure 

1 against Trypanosoma cruzi, the kinetoplastid protozoan parasite 

that causes Chagas disease. Three of the tested compounds presented 

relatively high trypanocidal activity; however, host cell toxicity was 

observed concomitantly [7]. In this work, we tested compounds 

1-11 against different Leishmania species, because the kinetoplastid 

protozoan parasites that cause Leishmaniasis (Leishmania ssp.), 

human African trypanosomiasis (HAT) (Trypanosoma brucei ssp.) 

and Chagas disease (Trypanosoma cruzi) are taxonomically related and 

have similar structural and biochemical features [2]. The 4-substituted 

2-(1H-pyrrolo [3, 2-c] pyridin-2-yl) propan-2-ols 1-11 displayed anti- 

leishmanial activity against Leishmania infantum, L. amazonensis 

and L. braziliensis, the results of which we present and discuss in this 
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Figure 1: The library of 4-substituted 2-(1H-pyrrolo[3,2-c]pyridin-2-yl)propan- 

2-ols 1-11. 

     

  

 

   

      

 
 

   

 

 

 
 

 
 

 

 

report. To evaluate the possible inhibitory activity against Leishmania 

nucleoside diphosphate kinase (NDK), a molecular docking study 

was performed on the nucleoside diphosphate kinase (NDK) from L. 

braziliensis (LbNDK). NDKs have been shown to be promising current 

targets for the design and discovery of anti-leishmanial drugs [8,9]. 

Materials and Methods 

Cell culture 

THP-1 cells (from the Rio de Janeiro Cell Bank, Xerem – RJ, Brazil) 

were cultured in RPMI 1640 media, supplemented with 20% heat- 

inactivated fetal bovine serum (FBS), 100 U/mL penicillin and 100 μg/ 

mL streptomycin, at 37°C in a 5% CO2, humidified incubator. Cells 

were seeded at 2 × 105/mL every 3 to 4 days. L. infantum (MHOM/ 

BR/72/BH046) were kindly provided by Prof Ricardo Fujiawara – 

UFMG, Brazil, while L. amazonensis (MHOM/BR/1977/LTB0016) 

and L. braziliensis (MHOM/BR/75/M2903) were obtained through the 

Leishmania repository of Fundação Oswaldo Cruz, Rio de Janeiro – 

RJ, Brazil. Promastigotes were cultured in M199 media supplemented 

with 40 mM Hepes, 0.1 mM adenine, 0.0001% biotin and 0.46 mM 

NaHCO3, 10% FBS, 100 U/mL penicillin and 100 μg/mL streptomycin. 

Parasites were passaged at 1 × 106/mL every 3 to 4 days in T175-flasks 

and maintained at 26°C under constant agitation (30 rpm). 

Compounds 

The synthesis of the library of the 16 4-substituted 2-(1H-pyrrolo 

[3, 2-c] pyridin-2-yl) propan-2-ols (of which 11, 1–11, are shown in 

Figure 1 is detailed in Balfour et al. [7]. 

High content screening assay 

THP-1 cells were plated onto 384-well plates in 25 μL of RMPI 

complete media (2.8 × 105/mL) containing 50 ng/mL PMA and 

incubated at 37°C/5% CO2 for 48 h. On infection day, 6-day-old 

promastigotes of Leishmania infantum (MHOM/BR/1972/BH46), 

Leishmania amazonensis (MHOM/BR/1977/LTB0016) or Leishmania 

 

braziliensis (MHOM/BR/75/M2903) were added for infection (1.4 × 

107/mL) in 25 μL of media and the assay plates were placed at 37°C 

(34°C for cutaneous species) and 5% CO2, humidified incubator. After 

24 hours, negative controls (0.5% DMSO), positive controls (10 μM 

amphotericin B) or test compound were added into the plate. Prior to 

the addition of compound, samples and reference drug were serially 

diluted (dilution factor=2), starting from 100 µM. The plates were 

incubated for 96 h for L. amazonensis and L. braziliensis and 72 h for L. 

infantum and then were fixed with 4% paraformaldehyde and stained 

with 5 μM Draq5. The Operetta high-content automated imaging 

system (Perkin Elmer) was used to acquire images and the Harmony 

software (Perkin Elmer) was used for image analysis, with the following 

output parameters: THP-1 cell number, infection ratio and number of 

parasites per infected cell. 

Data analysis 

The infection ratio (IR) was defined as the ratio between (i) the total 

number of infected cells in all images from the well and (ii) the total 

number of cells in all images from the same well. IR was normalized 

to negative (infected cells, DMSO-mock treated) and positive (non- 

infected cells) controls to determine the normalized activity: NA=[1 

– (Av. IRT – Av. IRP)/(Av. IRN – Av. IRP)] × 100. The cell ratio 

was defined as the ratio between the total number of cells in the test 

compound well to the average total number of cells from the negative 

control wells (infected cells, DMSO-mock treated). The cell ratio is 

an estimation of compound activity against the THP-1 host cell and 

is measured to estimate compound selectivity towards the Leishmania 

parasite. EC50 (concentration of compound that reduces infection by 

50%), CC50 (concentration of compound that reduces the number of 

THP-1 cells by 50% in relation to infected, non-treated controls) and 

the selectivity index (SI, estimated as a ratio between CC
50 

and EC
50

, 

or a ratio between the highest compound concentration tested and 

the EC
50 

whenever CC
50 

could not be calculated) were determined as 

described [7]. 

Molecular modeling 

The tridimensional geometries of 3, 4, 7 and 11 were drawn in 

the ChemSketch platform [10] and then optimized to adjust to the 

MMFF94 force field [11] using the Avogadro program [12]. The 

nucleoside diphosphate kinase of L. braziliensis (PDB ID: 4KPC) 

[13] was chosen as the target structure. Prior to docking, its atomic 

coordinates were aligned with those of the L. major homologue in 

complex with ADP (PDB ID: 3NGU), [14] by employing the PyMol 

program [15]. Automated docking was performed with the AutoDock 

program, [16] keeping the protein fixed and allowing freely rotatable 

bonds for the ligands. The grid box was centered at the center-of- 

mass of ADP (three-dimensional coordinates retrieved from PDB ID: 

3NGU) encompassing a volume of 1488 Å3 (X=28, Y=36 and Z=28 

points). Discretization was set at 0.375 Å. The Lamarckian Genetic 

Algorithm (LGA) implemented in the Autodock program was applied 

using default parameters. The selection of docking ligand binding poses 

was based on the ranking of the ten ligand conformational clusters and 

their respective binding energy values. The visual analyses of ligand- 

protein complexes were made by the PyMOL program [15]. Two- 

dimensional diagrams were obtained with the Pose View program [17]. 

Results 

Biological activity evaluation 

A high content screening (HCS) assay was used for biological 

models of distinct Leishmania species causing cutaneous (L. 
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amazonensis), mucosal (L. braziliensis) and visceral leishmaniasis 

(L. infantum) in order to assess the compounds activity against 

intracellular amastigotes. All compounds were tested in dose-response. 

Among the set of compounds tested, 4 and 11 presented the highest 

activity at 50 µM, leading to an infection inhibition higher than 75%, 

for all Leishmania species (Figure 2). 

Interestingly, 3 and 7 showed a species-dependent activity profile: 

while 3 was active specifically against L. infantum (approximately 

100% of antiparasitic activity), 7 presented an activity which varied 

from 55 to 85%. Moreover, compounds were not cytotoxic at tested 

concentrations except for 11 which caused a cell ratio lower than 

0.5, in both L. amazonensis and L. braziliensis models (data not 

shown). Regarding the antiparasitic activity (EC50) and the host cell 

cytotoxicity (CC50), compounds with high efficacy (high maximum 

activity) and relatively moderate potency (low EC50) against all 

three Leishmania species were identified; however, in general, the 

compounds presented a species-dependent activity. The order of 

sensitivity was: L. infantum>L. amazonensis>L. braziliensis (Table 1, 

Figure S1 Suppl). Among the tested compounds, compounds 3, 4, 7 and 

11 exhibited high efficacies against the full species panel, with means of 

maximum activity of 95.4% ± 5.23, for L. infantum, 87.0% ± 11.8, for L. 

amazonensis and 61.4% ± 11.9, for L. braziliensis. On the other hand, 

compound 5 presented significant inhibitory activity only against 

L. infantum (95.5%) and moderate activity against L. amazonensis 

(61.9%) and compounds 6 and 9 displayed a discrete efficacy (20.9% 

and 48.0%) against L. infantum specifically. Compounds 1, 2, 8 and 

10 were not active against any Leishmania species tested in this work. 

Only compounds 4 and 11 were also potent: while the former presented 

a consistent and moderate potency against all Leishmania models, with 

EC50 values in a range of 18.6 – 21.8 µM, the latter showed a species- 

dependent activity, with EC50 values of 6.8, 13.1 and 22.0 µM, against 

L. infantum, L. amazonensis and L. braziliensis, respectively. The 

compounds were not cytotoxic at the tested concentrations (CC50>100 

µM), except for 4 and 11, where higher concentrations lead to host cell 

toxicity as shown by a decrease in cell number. Compound 4 presented 

a comparable cytotoxicity among the Leishmania models, generating 

a selectivity index of approximately 3, whereas compound 11 showed 

a higher toxicity in both L. amazonensis (CC50 30.8 µM/SI 1.4) and 

L. braziliensis (CC50 33.4/SI 2.4) models, compared to L. infantum 

(CC50 78.9 µM/SI 11.6). The dose response curves are shown in the 

supplementary material. 

Molecular docking 

Nucleoside diphosphate kinases (NDKs) catalyze the transfer of a 

γ-phosphoryl group from a nucleoside triphosphate (NTP) donor to 

a nucleoside diphosphate (NDP) acceptor in a reversible mechanism. 

Therefore, NDKs are classified as ubiquitous enzymes that participate in 

different metabolic pathways, such as the regulation of gene expression 

in mammalian cells, bacterial pathogenesis and parasite housekeeping. 

In addition, NDKs are recognized to show highly conserved overall 

structure among their homologues, especially in relation to the 

active site [13,14]. These particular characteristics have made NDKs 

promising current targets for the design and discovery of antiparasitic 

drugs, including anti-leishmanial agents [8,9]. Taking these biological 

characteristics into consideration, the molecular modeling study was 

started using the atomic coordinates of the NDK of L. major in complex 

with ADP (PDB ID: 3NGU) to align the homologue L. braziliensis (PDB 

ID: 4KPC). The latter was chosen as the target structure because it was 

one of the Leishmania species employed in the biological testing. In 

addition, this study aimed to evaluate the possible mode of binding of 

3, 4, 7 and 11 into the ADP site of the parasite enzyme. This hypothesis 

can be supported by visualization of the docking ligand binding poses 

of 3, 4, 7 and 11 (Figure 3). For compound 11, a binding mode different 

from that of all other compounds was predicted. Its lowest binding 

energy pose has the 4-phenyl-2-(1H-pyrrolo [3, 2-c] pyridin-2-yl) 

propan-2-ol moiety superimposed on the adenine and ribose rings 

of the crystallographic ADP molecule. This pose represents the first 

conformational cluster (Cluster 1). Conversely, in Cluster 2, the lowest 

 
Compound L. infantum L. amazonensis L. braziliensis 

 EC
50 

CC
50 

S.I. M. A. (%) EC
50 

CC
50 

S.I. M. A. (%) EC
50 

CC
50 

S.I. M. A. (%) 

Ampho B 2.3 >25 >10.9 101.9 1.8 >25 13.7 102.1 1 >25 >24.8 95.5 

1 - - - - - - - - - - - - 

2 - - - - - - - - - - - - 

3 29.8 >100 >3.4 94.1 62.4 >100 >1.6 89.9 81.9 98.8 1.2 58 

4 18.6 53.9 2.9 96.1 21.7 62.9 2.9 100 21.8 67.6 3.1 78.7 

5 71.4 >100 >1.4 95.5 85.1 >100 >1.2 61.9 91.3 >100 >1.1 48.8 

6 - - - 20.9 - - - - - - - - 

7 35.6 >100 >2.8 89.5 46.4 >100 >2.2 71.5 37.7 >100 >2.7 52 

8 - - - - - - - - - - - - 

9 - - - 48 - - - - - - - - 

10 - - - - - - - - - - - - 

11 6.8 78.9 11.6 102.1 22 30.8 1.4 86.6 13.9 33.4 2.4 56.7 

EC50 and CC50 values are expressed as averages (µM: Indicates that value was not determined; Max. Act: Maximum activity observed 

in the dose-response curve. S.I: Selectivity Index; n = 2 independent experiments. 

Table 1: Biological activity of new compounds and reference drug against Leishmania intracellular parasites. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Profile of the tested compounds at 50 μM against distinct species 

of Leishmania intracellular amastigotes after 96 h of compound exposure (72 

h for L. infantum) regarding antileishmanial activity (left) and host cell toxicity 

(right). Data are means and error bars represent standard deviations of two 

replicates. Bars colours indicate distinct species as shown in the legend. 
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binding energy poses of 3, 4 and 7 have the 2-(1H-pyrrolo [3, 2-c] 

pyridin-2-yl) propan-2-ol moiety superimposing the phosphate groups 

of ADP. Remarkably, docking solutions corresponding to both clusters 

were obtained for all compounds, except for 4. The latter only yielded 

poses lying within Cluster 2, which is, in fact, the most populated 

one for all the compounds analyzed here (Table 2). In this table, it is 

possible to observe a narrow range between the binding energy values, 

in particular, their mean values, particularly for 3 and 7, which may 

explain the occurrence of these two principal conformational clusters. 

Interestingly, 11 showed the lowest binding energy and occupied 

the ADP site in a similar mode to that which has been observed for 

recently identified Leishmanial NDK inhibitors [8,9]. The presence 

of similar structural characteristics between these inhibitors and 11 

is noticeable. All these compounds have a heteroaromatic moiety (a 

hydrophobic region, the 2-(1H-pyrrolo [3, 2-c] pyridin-2-yl) propan- 

2-ol moiety of 11) attached to a side chain containing polar groups (a 

polar region), represented by the amino-carboxy benzyl group in 11. 

In addition, 11 possess the highest number of rotatable bonds, with 

higher number of degrees of freedom. These intrinsic characteristics 

allow 11 to show greater structural similarity with ADP, making its 

docking closer to that of the natural substrate.[14] Compounds 3, 4 and 

7 have predominantly two hydrophobic regions, the 2-(1H-pyrrolo [3, 

2-c] pyridin-2-yl) propan-2-ol moiety attached to the 4-(β-naphtyl) 

(3), 4-phenyl-(3’-fluoro-4’-phenyl) (4) and 4-phenyl-(4’-thioethyl) 

groups (7). Furthermore, due to the chemical nature of these 

4’-substituent groups in 3 and 4, a major steric hindrance between 

the two hydrophobic regions is observed. In addition, the obstructive 

ortho effect promoted by the fluorine group in 4 may contribute to 

its preferential conformation in an inverse mode of ADP. These facts 

are readily described by two-dimensional diagrams [18] of 4 and 11 

(Figure 4). For the sake of comparison, the corresponding diagram of 

ADP in the binding site of 3NGU was also included [14]. As can be 

seen in these diagrams, 11 interacts with the same hydrophobic (His50, 

Tyr51, Leu63, Val111, Gly112) and polar (Lys11, Asn114) residues 

that ADP interacts with, while it was the 3’-fluoro-4’-phenyl group 

in 4 that interacted with the same hydrophobic residues. These notes 

about the structural requirements may explain the weak or absent 

anti-leishmanial activity of 1, 2, 5, 8 and 10 observed in the biological 

testing. In these compounds the 4-substituent group is hydrogen 

(1), or a phenyl group without substituents (2), or substituted by a 

methyl group (5), or with polar groups in the ortho position (8 and 

10). Therefore, these comparatively lower molecular structures would 

dock in the ADP binding site, with the 2-(1H-pyrrolo [3, 2-c] pyridin- 

2-yl) propan-2-ol moiety in particular, but probably with a significantly 

reduced number of polar and hydrophobic interactions, resulting in 

lower energy binding values. 

Discussion 

In this work, a high content assay was used to assess the biological 

activity of a small library of 4-substituted 2-(1H-pyrrolo [3, 2-c] 

 

 

Compound 
Conformational 

cluster 

Lowest binding 

energy (kcal/ 

mol) 

Mean binding 
Conformations/ 

Cluster 
Energy (kcal/ 

mol) 

11 
1 -6.99 -6.6 3 

2 -5.76 -5.29 6 

3 
1 -5.96 -5.96 1 

2 -6.17 -5.98 8 

4 2 -6.67 -6.67 10 

7 
1 -5.09 -4.92 2 

2 -5.65 -5.4 8 

Table 2: Conformational clusters, lowest and mean binding energy values, and 

number of conformations per cluster relative to the docking of 3, 4, 7, and 11 into 

the ADP site of LbNDK. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Two-dimensional diagrams of the molecular interactions between compounds 11 (A) and 4 (B) in the ADP binding site of the LbNDK. The ADP 

interactions reported in the 3NGU are presented for comparison (C). Black dashed lines indicate hydrogen bonds. Green solid lines show hydrophobic interactions, 

while green dashed lines show π-π interactions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Superposition of the 4-substituted 2-(1H-pyrrolo [3, 2-c] pyridin-2-yl)- 

propan-2-ol compounds (3, 4, 7, and 11) to the co-crystallized ADP (retrieved 

from PDB ID: 3NGU) in the binding site of LbNDK. Carbon atoms of 3, 4, 7, 

and 11 are shown in magenta, light blue, cyan and green, respectively. Carbon 

atoms of ADP are shown in yellow. Gray dashed lines indicate H-bonding 

interactions. Only the polar hydrogen atoms of the ligand compounds were 

presented. 



Page 5 of 8 

 

 

 
 

 
L. infantum L. amazonensis L. braziliensis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1: Dose-response curves: Curves were generated by a nonlinear regression equation (Graphpad prism). Graphs represent the normalized activity (blue 

color) and cell ratio (red color). Images represent data from two independent experiments. 
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pyridin-2-yl) propan-2-ols against intracellular amastigotes of three 

Leishmania species. The use of the HCS approach simultaneously 

provided information on the anti-leishmanial activity of the compounds 

against the disease-relevant life cycle stage of the parasite and toxicity 

against host cells. Additionally, compared to the frequently performed 

methodologies of manual counting and genetically modified parasites, 

image-based assays are considered more sensitive, robust and reliable 

[19-22]. 

The compounds tested in this work, particularly compounds 

3, 4, 7 and 11, displayed reasonable activity against the full species 

panel, being generally more active against L. infantum, followed by 

L. amazonensis and then L. braziliensis. These compounds presented 

considerable efficacy against Leishmania parasites, with values of 

maximum activity higher than 52%, but only compounds 4 and 11 were 

also potent. However, the potency observed for these two compounds 

demonstrated a distinct profile: while compound 4 was comparably 

active against the full species panel (EC50 ~ 20 µM), possibly suggesting 

a common mechanism of action/target among the species, compound 

11 presented variable potency against different Leishmania species. 

Previous studies have already reported evidence of intrinsic variation 

in Leishmania susceptibility among the different species of Leishmania, 

even for reference compounds. Escobar and colleagues, for example, 

have demonstrated that miltefosine potency varied from 2.6 µM for 

L. aethiopica to 37.2 µM for L. major [23]. The same divergent activity 

profile was also demonstrated for amphotericin B [24] and antimonial 

compounds [25-27]. Although not clearly elucidated, the differences in 

Leishmania sensitivities to reference and experimental drugs has been 

associated with several biochemical and molecular variations among the 

species, including the levels of protein expression and the biochemical 

composition of the plasma membrane [23,28]. Additionally, distinct 

Leishmania species and strains share significant differences in their 

genotype [29-32] gene expression regulation [33,34] infectivity, [35- 

38] and infection profile [23,39] which, indeed, could have an impact 

on drug activity. 

Azaindoles, the chemical class used herein, have been frequently 

explored in drug discovery, since they have broad-spectrum biological 

activity and clinical applications, for example as benzodiazepine 

receptor ligands, [40] dopamine D4 receptor ligands, [41] and 

antineoplasic agents [42,43]. In the infectious disease field, studies have 

reported the inhibitory potential of azaindoles against the models of 

Giardia duodenalis [44] and Plasmodium falciparum [45] In a report 

by Dodd et al., a hybrid compound containing a thiosemicarbazone 

linked to an azaindole nucleus showed no anti-leishmanial activity 

at the up concentration tested [46]. On the other hand, considering 

the chemical structure of the general scaffold, there have been several 

reports of nitrogen containing heterocyclic compounds in general that 

display anti-leishmanial activity [47-52]. Moreover, compounds whose 

anti-leishmanial activity was either comparable to or slightly lower 

than that of amphotericin B, are encouraging and could form the basis 

of chemical structure optimization to increase anti-leishmanial activity 

and selectivity. 

Molecular docking is a current computational tool employed in the 

design and discovery of novel drug candidates [53-55]. Classified among 

the structure-based drug designing approaches, molecular docking 

studies have been successfully performed to predict, at the atomic 

level, the experimental binding modes and affinities of small molecules 

(namely ligands, here represented by the 4-substituted 2-(1H-pyrrolo 

[3, 2-c] pyridin-2-yl) propan-2-ol compounds) within the binding site 

of particular receptor targets, herein suggested to be the ADP site of the 

NDK enzyme. Therefore, molecular docking simulations gain special 

importance when the putative target is unknown and it may help in the 

identification and elucidation of the mechanism of action involved in 

the biochemical process. 

The molecular modeling results obtained suggested the possibility 

that 3, 4, 7 and 11 bind to the ADP site of the LbNDK. Therefore, one 

may hypothesize that the anti-leishmanial activity observed in the 

biological testing arises from a competitive inhibition mechanism for 

these compounds with the natural substrate, ADP. This could interfere 

in the reversible mechanism of the transfer of a γ-phosphoryl group 

from a purine triphosphate (NTP) donor to a purine diphosphate 

(NDP) acceptor as performed by the nucleoside diphosphate kinase, 

[56] impairing the parasite´s metabolic pathways and possibly leading 

to parasite death. In agreement with our findings, inhibition of the NDK 

of Leishmania major (LmNDK) by a compound containing a pyrrole- 

indolinone moiety (a nitrogen containing heterocyclic compound that 

is similar to 1H-pyrrolo [3, 2-c] pyridines (5-azaindoles)), has been 

reported during the preparation of this manuscript [9]. 

Conclusion 

A small library of 4-substituted 2-(1H-pyrrolo [3, 2-c] pyridin- 

2-yl) propan-2-ols was tested in cell-based assays to discover 

compounds with novel, broad-spectrum anti-leishmanial activity. 

While several of the tested compounds displayed anti-leishmanial 

activity against intracellular amastigotes of one or more Leishmania 

species (L. infantum, L. amazonensis and L. braziliensis), only one of 

the compounds, 11, displayed sufficiently selective activity towards 

L. infantum. The molecular modeling study suggested that these 

compounds are capable of binding to the ADP site of the nucleoside 

diphosphate kinase from L. braziliensis, and, possibly, promoting its 

inhibition by a competitive mechanism, for example, by interfering 

in the reversible mechanism that regulates the metabolic pathways 

of purine nucleotides. Altogether, the data reported here shows that 

4-substituted 2-(1H-pyrrolo [3, 2-c] pyridin-2-yl) propan-2-ols might 

become promising chemical entities for anti-leishmanial discovery. 

Future work will focus on improving the synthetic chemistry, which 

as discussed in our previous report was problematic and limited, [7] 

and testing for Leishmanial NDK inhibition, in order to evaluate our 

hypothesis about the molecular mechanism of action, especially, in 

relation compound 11. In relation to molecular design, consideration 

should be given to increasing specificity towards the parasite and/ 

or decreasing toxicity to the host cell, establishing structure-activity 

relationships and drug-likeness properties in order to develop better 

antiprotozoal candidates. 
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