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Abstract
Ecotoxicological Classification Risk Index for Soil 
(ECRIS), is a new classification system specific for 
soil risk assessment, which gives a comparative 
indication of the risk linked to environmental 
contamination by any chemical. In this work 
this parameter was estimated by quantitative 
structure–activity relationship approaches by 
using interpretable molecular descriptors. Linear 
and nonlinear models were developed using 
Multiple Linear Regressions (MLR) and Artificial 
Neural Network (ANN) methods. Robustness 
and reliability of the constructed MLR and ANN 
models were evaluated by using the leave-one-
out cross-validation method, which produces 
the statistics of Q2 MLR = 0.84, Q2 ANN = 0.93. 
Furthermore, the chemical applicability domains 
of these models were determined via leverage 
approach. The results of this study indicated 
the ability of developed QSPR models in the 
prediction of ECRIS of various chemicals from 
their calculated molecular structural descriptors.
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Introduction
Today consideration of environmental risk assessment of 
chemical pollutants is very important. Several indicators 
for reporting environmental and human health conditions 
have been published and indicator frameworks have also 
been published for chemicals (Bunke and Oldenburg 
2005), hazardous wastes (Peterson and Granados 2002) 
and hazardous material at landfill sites (Peterson and 

Williams 1999) [1]. Some scoring and ranking systems 
have been adopted by authorities and regulatory centers 
mainly as first screening tools to identify the chemicals 
with greatest potential for adverse effects (Huijbregts et 
al. 2000). For instance, the SCRAM scoring and ranking 
assessment model (Snyder et al. 2000) is one of these 
and one of the few systems that also takes the uncertainty 
into account when there is no data available. SCRAM is 
limited to chemicals found in the environment, because its 
aim is mainly to screen and order chemicals based on their 
profile of persistence, bioaccumulation and toxicity [2,3]. 

Some indicators have been developed as decision support 
system tools, to assess the potential environmental 
or economic consequences of pesticide management 
systems (HAIR 2006; United Nation 2007) [4]. The 
indicators should track temporal risk trends in agricultural 
pesticide usage on different geographical scales (field 
scale, regional scale, national scale) and should follow 
up the progress in meeting pesticide reduction goals. 



J Chem Analyt Biochem 2024; Vol. 1(1) Page - 2

Fatemi MH

and nonlinear (ANN) methods. The QSPR models were 
validated by cross-validation as well as application of the 
models to predict the KOC of external set compounds, 
which did not contribute to model development steps. 
Both linear and nonlinear methods provided accurate 
predictions, although more accurate results were obtained 
by the ANN model. The root-mean-square errors of test 
set obtained by MLR and ANN models were 0.3705 and 
0.2888, respectively [9]. 

Another work is Development of QSAR’s in soil 
ecotoxicology: Earthworm toxicity and soil sorption of 
chlorophenols, chlorobenzenes and chloroanilines were 
reported by A.M. Van Gestel and W.C. Ma (Van Gestel 
and Ma 1993). In this study Soil adsorption and the toxicity 
of four chloroanilines for earthworms were investigated 
in two soil types. The toxicity tests were carried out with 
two earthworm species, Eisenia andrei and Lumbricus 
rubellus. LC50 values in mg kg−1 dry soil was recalculated 
towards molar concentrations in pore water using data 
from soil adsorption experiments [10,11]. An attempt has 
been made to develop Quantitative Structure Activity 
Relationships (QSAR’s) using these results and data on 
five chlorophenols and dichloroaniline in four soils and 
five chlorobenzenes in two soils published previously. 
Significant QSAR relationships were obtained between 
1) adsorption coefficients (log K om) and the octanol/
water partition coefficient (log k ow), and 2) LC50 values 
(in itμmol L−1 soil pore water) and log K ow. It can be 
concluded that both earthworm species tested are equally 
sensitive to chlorobenzenes and chloroanilines, E. andrei 
is more sensitive than L. rubellus to chlorophenols [12].

Moreover, QSPR study on the soil-water partition 
coefficient of polychlorinated biphenyls by using artificial 
neural network were done by L. Jiao (Jiao 2012). They 
reported the practicable Quantitative Structure Property 
Relationship (QSPR) model for predicting the soil-water 
partition coefficient, Koc, of 16 Poly-Chlorinated Biphenyls 
(PCBs) [13]. The structure of the investigated PCBs 
is encoded by five quantum structural descriptors and 
on topological index. The calibration model of Koc was 
developed by using Artificial Neural Network (ANN). The 
input variables of ANN were generated from 6 structural 
descriptors by using Principal Component Analysis 
(PCA). Leave one out cross validation was carried out 

HAPERITIF (Calliera et al. 2006) is one of these indicators 
for monitoring pesticide risk trends attributable to dietary 
pesticide exposure on various geographic and temporal 
scales, while ERIP (Finizio et al. 2001) is related to the 
ecotoxicological effects in soil. Soil contamination from 
point sources is a worldwide problem most often related to 
current activities, industrial plants no longer in operation, 
past industrial accidents and improper municipal and 
industrial waste disposals. One important criterion for 
assessment of chemicals, is Ecotoxicological Classification 
Risk Index for Soil (ECRIS) (Senese et al. 2010). It is a 
semi-quantitative index for estimating risk based on several 
toxicity data and on various kinds of exposure information. 
Evaluating ecological risk is complex, since it requires 
detailed knowledge of the biotic and abiotic components 
of the considered ecosystem, in order to obtain a realistic 
estimate of all the exposure pathways of the contaminants 
[5,6]. 

Such an approach is not only very expensive in terms 
of human and economic and time resources, but it 
also needs support by developments and integration 
of different scientific areas. Therefore, developing of 
theoretical methods for prediction of environmental risk 
of pollutant is very important. One of these methods is 
Quantitative Structure–Property Relationship (QSPR) 
approaches. Quantitative Structure–Property Relationship 
(QSPR) is one of the most promising methods, which 
explore a pattern in data by using descriptors derived 
from molecular structure to predict the activity/property of 
new and untested chemicals possessing similar molecular 
features [7]. 

A number of QSPR studies reported

In a promising work, QSPR modeling of soil sorption 
coefficients (KOC) of Pesticides using SPA-ANN and 
SPA-MLR were reported by N. Goudarzi and co-workers 
(Goudarzi et al. 2009). In this study A quantitative 
structure−property relationship (QSPR) study was 
conducted to predict the adsorption coefficients of some 
pesticides [8]. The successive projection algorithm 
feature selection (SPA) strategy was used as descriptor 
selection and model development method. Modeling of the 
relationship between selected molecular descriptors and 
adsorption coefficient data was achieved by linear (MLR) 
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to assess the predictive ability of the developed model. 
The prediction RMS%RE for the 16 PCBs is 6.35. The 
R2 between the predicted and experimental logKoc is 
0.8522. It is demonstrated that ANN combined with PCA 
is a practicable method for developing QSPR model for 
Koc of these PCBs [14]. Also, Development of QSARs for 
the toxicity of chlorobenzenes to the soil dwelling springtail 
Folsomia candida were reported by D. Giesen and co-
workers (Giesen, et al. 2012). The purpose of their study was 
to developed quantitative structure-activity relationships 
(QSARs) for the toxicity of nine chlorinated benzenes 
to the soil-dwelling collembolan Folsomia candida in 
natural LUFA2.2 (LandwirtschaftlicheUntersuchungs 
und Forschungsanstalt [LUFA]) standard soil and in 
Organization for Economic Co-operation and Development 
artificial soil. Toxicity endpoints used were the effect 
concentrations causing 10% (EC10) and 50% (EC50) 
reduction in the reproduction of the test organism over 
28 d, while lethal effects on survival (LC50) were used for 
comparisons with earlier studies [15].

Chlorobenzene toxicity was based on concentrations in 
interstitial water as estimated using nominal concentrations 
in soil and literature soil–water partition coefficients. 
Additionally, for LUFA2.2 soil the estimated concentrations 
in interstitial water were experimentally determined by 
solid-phase microextraction measurements. Measured 
and estimated concentrations showed the same general 
trend, but significant differences were observed [16]. With 
the exception of hexachlorobenzene, estimated EC10 and 
EC50 values were all negatively correlated with their logKow 
and QSARs were developed. However, no correlation for 
the LC50 could be derived and 1,2,4,5-tetrachlorobenzene 
and hexachlorobenzene had no effect on adult survival at 
all. The derived QSARs may contribute to the development 
of better ecotoxicity-based models serving the REACH 
program. In the present work we try to generate QSPR 
models based on MLR and ANN to predict the ECRIS of 
some organic compounds [17].

Materials and methods
The main steps involved in developing a QSPR model are 
(a) selection of the data set, (b) calculation of molecular 
descriptors, (c) fitting the statistical model, (d) validation 
of the model and (e) Assessing the applicability domain 
[18].

Data set

Data set included 60 common molecules that were found 
in various landfills leachate of north Italy and are shown in 
Table 1 (Senese et al. 2010). The ECRIS values of data 
set ranged from 1.32 to 58.44 for 2-Imidazolidinthyone and 
4.4’- (Methyl ethylidene) bis-phenol, respectively. Data 
set was split to training, internal and external test sets 
by Y- ranking method, that each of them has 49, 6 and 5 
members, respectively [19]. 

Descriptor calculation and screening

Molecular descriptors are used to encode molecular 
structural features with QSPR aims. In order to calculate 
descriptors, the chemical structures of molecules were 
drawn by Hyperchem package (Version 7) and optimized 
by the AM1 semiempirical method (Hyperchem 2002). 
After geometry optimization, Hyperchem output files 
were used by Dragon program as input to calculate 
molecular descriptors (Todeschini et al. 2003) [20,21]. 
Then descriptors that have high correlation with each 
other (R>0.9), and descriptors with same or near the 
same values were eliminated from the pool of descriptors. 
Variable selection is one of the most important steps in 
QSPR model development, which is especially important 
when one is required to deal with a large or even over 
whelming variable set. In order to determine the optimum 
number of descriptors from the remaining 429 descriptors 
the stepwise multilinear regression was used [22].

In order to determine the optimum number of descriptors 
in the model the value of R2 was calculated andplotted 
versus the number of descriptors in the model (Figure 
1, break- point procedure). As can be seen in this figure 
there is not any significant improvement in R2 by adding 
more than six descriptors to the model. Therefore, these 
descriptors were selected to developing MLR and ANN 
models. The selected descriptors are; Radial Distribution 
Function - 045/weighted (RDF045v), Moriguchioctanol-
water partition coefficient (logP) (MLOGP), hydrophilic 
factor (Hy), 3D-MoRSE-signal  13/unweighted (Mor13u), 
leverage-weighted autocorrelation of lag 4/unweighted 
(HATS4u) and leverage-weighted autocorrelation of lag 5/
weighted by mass (HATS5m). Detailed description of these 
descriptors can be found in the hand book of molecular 
descriptors by Todeschini (Todeschini and Consonni 
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Number Chemical name (ECRIS) EXP (ECRIS) MLR (ECRIS) ANN
1 4.4'-(Methyl ethylidene)bis-phenol 58.44 53.23 56.98

2 Dichloro-Benzophenone 57 48.47 57.46

3 N,N'-di-cyclohexyilthiourea 44.51 40.86 44.15

4 4-Chloro-3-methyl-ph.enol 44.47 31.85 42.49

5i p-Tertbutyl-phenol 43.9 24.42 37.24

6 2,4-Bis-1-methylethylphenol 43.82 41.71 45.31

7 Isothiocyanate cyclohexane 40.38 43.78 41.65

8 4.4'-Methylenebis-phenol 39.02 43.46 38.8

9 2,6-Bis-(1,1-dimethylethyl)-phenol 37.52 38.41 36.23

10e Benzyl-butyl-phthalate 37.4 43.04 56.66

11 N,N'-Dicyclohexylurea 35.49 37.96 35.1

12 2-Methyl-thyobenzothiazole 28.53 21.97 28.99

13 Dimethylphenol 26.58 14.93 28.92

14 a, a, a,a-Tetramethylbenzen-dimethanol 23.58 19.87 24.76

15i a, a-Dimethylbenzene-methanol 23.39 21.85 35.27

16 4',2-Methylpropyl-acetophenone 22.88 25 20.13

17 (1-Methylethyl)-phenol 22.85 23.82 23.06

18 2(3H)-Benzothiazoline 20.64 12.41 19.95

19 2-Mercaptobenzothiazole 19.41 21.45 19.36

20e 1,3-Bis(1-methylethenyl)-benzene 19.01 25.38 28.95

21 1-Ethyl-4-methoxy-benzene 17.33 9.5 17.35

22 Coumarone 15.32 10.67 9.44

23 4-Methylphenol 15.14 14.97 14.93

24 Indole 14.25 14.58 14.38

25i 1-[4-(10-Hydroxy-1-methylethyl)phenyl]-ethenone 13.79 16.41 20.65

26 4-Ethyl-2-methoxy phenol 13.21 14.81 13.35

27 Phenol 11.63 8.36 10.91

28 1-Methyl-1-phenyl-idrazyne 10.76 6.1 7.39

29 1-Ethenyl-4-methoxy benzene 10.34 13.2 11.74

30e m-Xylene 9.33 10.85 11.44

31 Di-2-phenyl-1,2-propandiole 9.32 21.02 9.75

32 3,5,5-Trimethyl hexanoic acid 8.91 14.36 8.7

33 Benzothiazole 8.54 12.88 12.66

34 Hexanoic acid 8.1 -0.2 8.43

35i 1-Methoxyethylbenzene 8.07 7.61 8.47

36 Toluene 7.68 9.9 5.67

37 o-Xylene 7.67 13.85 10.67

38 p-Xylene 7.67 12.62 6.77

39 1,3-Dihydro-2H-indolone 6.38 9.72 7.62
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2000). Table 2 indicate the correlations matrix between 
these descriptors. As can be seen in this table there is 
not any high correlations between selected molecular 
descriptors [23,24].

Diversity analysis

In order to evaluate the prediction power of developed QSPR 
models (external validation test), data set must be divided 
to training and test sets. The common selection procedure, 
which is used for data set splitting is random selection. In 
this method the available data will be split without any bias 
for structure and there is a great probability of selecting 
chemicals outside the model structural application domain 
(AD) in the prediction set [25]. Thus, the predictions for 
these chemicals could be unreliable, simply as they are 
extrapolated by the model. The other method is y- ranking 
procedure. In this method the data set is sorted in an 
ascending or descending manner according to their ECRIS 
value.Then test sets compounds were selected from this 
list by desirable distances from each other and remaining 
was considered as training set. This method was used to 
splitting of data set in the present work [26].

40e 4-Piperidinole 6.23 0.79 8.78

41 Tetrachloroethylene 5.92 4.09 5.25

42 Acetophenone 5.74 8.49 3.66

43 Benzene propanoic acid 4.4 10.16 6.98

44 2-Hexanole 3.57 3.91 3.53

45i Trichloroethylene 3.55 0.94 -0.34

46 Benzene acetic acid 2.88 15.79 2.92

47 Carbon tetrachloride 2.5 4.13 3.62

48 1,2-Dichloropropane 2.5 3.4 1.16

49 Chloroform 2.45 0.65 1.18

50e Trichlorofluoromethane 2.36 4.29 -6.95

51 Tetramethylthiourea 2.12 10.93 2.42

52 Freon 113 2.12 11.11 1.93

53 4-Methylbenzen-solfonamyde 2.04 9.78 6.35

54 2,2-Dimethyl-1,3-propandiole 2 3.29 1.35

55i Caprolactam 1.74 -1.06 4.19

56 1,3-Propandiole-2-ethyl-2-hydroxymethyl 1.72 11.49 2.04

57 Tetrahydro-1,1-dioxydethiofene 1.72 -10.48 3.46

58 1,1,1-Trichloro ethane 1.64 1.03 2.13

59 1-(2-Methoxy proxy)-propanol 1.64 3.39 1.29

60 2-Imidazolidinthyone 1.32 1.18 0.79

Internal test set. 
e External test set.

Table 1: Data set and corresponding observed MLR and ANN predicted values of ECRIS

Figure 1: The plot of R2 against number of 
descriptors.
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The obtained training set consist of 49 molecules and was 
used for model generation, while the internal test set had 
6 compounds and was used for preventing over training of 
ANN model and the external test set had 5 members and 
was used to evaluate the predictability of the ANN model. 
In the case of MLR model internal and external test sets 
were considered as test set [27]. Even by this algorithm 
there is no guarantee that the training and test sets be 
scattered over the whole area occupied by representative 
points in thedescriptor space (representativity), and that 
the training set be distributed over an area occupied by 
representative points for the whole dataset. To examine 
the diversity of data set, the mean distances of one sample 
to the remaining ones (i) were computed from descriptor 
space matrix as follows:

i =                                      (1)

Where is a distance score for two different compounds,which 
can be measured by the Euclidand distance norm based 
on thecompound’sdescriptors (and):

=                                          (2)

Then the mean distances were normalized within the 
interval of zero to one and theresulting values were 
plotted against ECRIS values [28,29]. Figure 2 indicates 
the results ofdiversity analysis on the data set. As can be 
seen from this figure, the structures of the compounds 
are diverse in all sets and the training set with a broad 
representation of the chemistry space was adequate to 
ensure the model’s stability and the diversity of test sets 
can prove the predictive capability of the model [30].

Results and Discussion
Linear modeling

Six selected descriptors were considered as independent 
variables and ECRIS value was considered as dependent 
variable for developing linear model [31]. The specification 
of obtained MLR model is shown in eq. (3):

    (3)

The calculated ECRIS values of molecules in data set by 
this model are shown in Table 1. The statistical parameters 
of this model are indicated in Table 3.

Nonlinear modeling

In order to check any nonlinear relationships between 
selected molecular structural descriptors and ECRIS 
values, artificial neural network (Hagan et al. 1996) 
was applied by using STATISTICA (ver.7) software 

Figure 2: The results of diversity test.

Descriptors Mor13u Hy HATS4u HATS5m MLOGP RDF045v
Mor13u 1 -0.197 0.311 0.071 0.183 0.23

Hy   1 0.23 -0.077 -0.451 -0.053

HATS4u     1 0.138 -0.367 0.046

HATS5m       1 0.272 0.509

MLOGP         1 0.492

RDF045v           1

Table 2: The correlations matrix among selected descriptors
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(STATISTICA 2004) [32,33]. Generally, each network 
is built from several layers: one input layer, one or more 
hidden layers, and one output layer. The node in each layer 
is connected to the nodes of the next layer by weights. 
The number of neurons in input and output layers is equal 
to the number of independent variables and dependent 
variables, respectively. The number of neurons in hidden 
layer would should be optimized. A three-layer network 
with a sigmoid transfer function was designed, for which 
selected 6 selected descriptors were used as its inputs 
and ECRIS values as outputs [34,35]. 

After optimization of topology and training of network, 
it was used for prediction of ECRIS values of data set. 
The predicted values of ECRIS for training, internal and 
external test sets were shown in Table 1. The statistical 
parameters of this model are shown in table 3.Comparison 
between these values and those obtained by MLR model, 
indicates the superiority of ANN model over MLR ones. 
Figure 3 indicates the plot of ANN calculated versus 
experimental values of ECRIS. The correlation coefficient 
between calculated and experimented values of ECRIS 
is 0.99, 0.90 and 0.98 for training, internal and external 
test sets, respectively. Also, the residuals of the ANN 
calculated ECRIS versus their experimental values are 
shown in Figure 4. Random propagation of residuals over 
zero line indicates that there is not any systematic error in 
developed ANN model [36].

Model validation

Validation is a crucial aspect of quantitative structure–
activity relationship modeling. Cross validation provides 
a reasonable approximation of ability with which the 

QSPR predicts the activity values of new compounds. 
Leave One Out cross validation (LOO) and leave Many 
Out cross validation (LMO) tests are two methods, which 
frequently used to validate QSPR models (Roy 2007). In 
the case of leave-one-out cross-validation, each member 
of the sample in turn is removed, the full modeling method 
is applied to the remaining n-1 members, and the fitted 
model is applied to the holdback member. Cross-validated 
squared correlation coefficient Q2 is calculated according 
to the following formula:

= 1                                                     (4)

where  and 
 
indicate predicted and observed activity 

values, respectively and  indicate meanactivity value. 
A model is considered acceptable when the value of Q2 
exceeds 0.5 [37]. Also standardized predicted error sum 
of squares (SPRESS), are calculated according to the 
following equation:

=                     (5)

In the above expression, n is the number of observations, 

and k is the number of descriptors in the model. The 
calculated values of Q2CV and SPRESS for LOO test on 
the ANN model are; 0.93 and 4.27, while these values are 
0.84 and 6.5, respectively for the MLR model. Comparison 
between these values and also statistics in Table 3, 
indicates the superiority of ANN over MLR model. Also, 
the Y- scramblingprocedure was performed to ensure 
that there is not any chance correlation within the data 

Figure 3: The plot of the ANN calculated ECRIS 
against the experimental values.

Figure 4: Plot of the ANN residuals against 
experimental values of ECRIS.
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matrix (Rucker et al. 2007). The mean value of R2 after 30 
Y-scrambling runs was 0.286, which does not indicate the 
probability of a chance correlation [38].

Applicability domain

Before a QSPR model is put in to use for screening 
chemicals, its domain of application must be defined (Xia 
et al. 2009). A simple measure of a chemical being too far 
from the applicability domain of the model is its leverage 
(Gramatica 2007), which is defined as (Netzeva et al. 
2005):

= ( = 1…,                                          (6)

Where is the descriptor row-vector of the query compound 
andis thematrix ofmodel descriptor values for training set 
compounds. The super scriptrefers to the transpose of the 
matrix/vector. The warning leverageis, generally, fixed at. 
To visualize the applicability domain of nonlinear model, 
the standardized residuals versus leverage (Hat diagonal) 
values were plotted (William plot) for an immediate and 
simple graphical detection of both the response outliers 
(i.e., compounds with standardized residuals greater than 
three standard deviation units>) and structurally influential 
chemicals in the model (>). Figure 5 shows the results for 
this analysis of the nonlinear QSPR model. As can be seen 
from this figure, there is no response outlier compound 
both for training and test sets, which indicated further the 
reliability of the predictions from another aspect [39].

Descriptors interpretation

In order to determine the relative importance of each 
variable in the ANN model, the sensitivity analysis was 
applied. This method is performed based on the sequential 
removal of variables by zeroing the specific connections 
weight for that specific input variable in the first layer of the 
ANN. For each sequentially zeroed input variable, root-
mean-square error of prediction (RMSEP) as the prediction 
error of network was calculated. Generally, RMSEP value 

increases in this way. Then, differences between RMSEP 
and root-mean-square error of established ANN was 
calculated and shown as DRMSE. Each variable, which 
causes greater value of DRMSE, is more important. This 
procedure was applied on the developed ANN model. The 
calculated values of DRMSE are plotted in Figure 6. As 
can be seen in this figure the most important descriptor 
was RDF045v.This descriptor is the radial distribution 
function - 045 / weighted by van der Waals volume and is 
the topology type descriptors [40].

The RDF descriptors are based on the distance distribution 
in a three-dimensional representation of the molecule. 

Model Training set Internal test set External test set
  R SE F RMSE R SE F RMSE R SE F RMSE

MLR 0.92 6.36 50.31 5.94     0.82 8.63 18.49 6.82

ANN 0.99 1.77 3755.2 1.74 0.9 7.41 18.91 6.5 0.98 2.39 135.14 10.65

Table 3: Statistical results of MLR and ANN models

Figure 5: Applicability domain of nonlinear model; 
(h*=0.37).

Figure 6: The results of sensitivity analysis on the 
ANN model.
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Besides information about inter-atomic distances they 
also give information about ring types, planar and non-
planar systems and atom-types (Hemmer et al. 1999). 
The second descriptor was MLOGP. This descriptor is 
the Moriguchi octanol-water partition coefficient which 
indicates the lipophilicity of molecule (Moriguchi et al. 
1992). The 3D-molecular representation of structure based 
on electron diffraction (3D-MORSE)-type descriptors 
that represent the 3D structure of a molecule is another 
descriptor in the model (Mor13u) (Soltzberg and Wilkins 
1997). These types of descriptors are based on the idea 
of obtaining information from the 3D atomic coordinates 
by transforming that used in electron diffraction studies for 
preparing theoretical scattering curves (Schuur et al. 1996; 
Soltzberg and Wilkins 1997). The others descriptors are; 
HATS4u which is leverage-weighted autocorrelation of lag 
4 / unweighted and HATS5m which is leverage-weighted 
autocorrelation of lag 5 / weighted by mass. These types 
of descriptors are computed on the basis of Hydrogen-
filled molecule.

They are belonged to geometry, topology, and atom-
weighted assembly (GETAWAY) descriptors (Consonni et 
al. 2002). These types of descriptors encode geometrical 
information given from influence matrix, topological 
information given by molecular graph, and chemical 
information from selected atomic properties. Another 
descriptor is hydrophilic factor, Hy. This descriptor is 

an empirical descriptor that related to hydrophilicity of 
compounds (Todeschini et al. 1997), and defined as 
follows:

= (1 + ) (1 + ) + (  + 

) /  ( )                                          (7)

Where, is the number of hydrophilic groups (-OH, -SH, 

-NH), is the number of carbon atoms, andthe number 
of atoms (hydrogen excluded). The appearances of 
topological and electronic type descriptor in developed 
QSPR model indicates the role of steric and electronic 
interactions in ECRIS values of chemicals [41].

Conclusion
In this study, MLR and ANN were used to build linear and 
nonlinear QSPR models to predict the soil contaminant 
index of some organic compounds. The statistical results 
of the developed models indicated the superiority of the 
nonlinear model over linear ones. These results revealed 
that there are some nonlinear relations between the 
soil contaminant index of some organic compounds 
and their structural molecular descriptors. Moreover, 
it was concluded that it was possible to predict the soil 
contaminant index of some organic compounds from their 
theoretical calculated molecular descriptors.
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