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Abstract 

 
We used X-ray Diffraction (XRD) and Raman Spectroscopy to demonstrate the formation of atomic layers of 

MoS2 using a novel friction induced crystal growth method. The MoS2 crystal was grown by friction at the interface 

between stainless steel and high carbon chromium bearing steel (SUJ2). The MoS2 was produced 

mechanochemically from molybdenum dialkyl dithiocarbamate (MoDTC) mixed with synthetic oil. The friction 

experiments were carried out with a load of 10 N at a sliding speed of 2.5 mm/sec in an oil-bath at a temperature of 

80°C. We investigated the effect of the surface conditions of the stainless steel substrates on the formation of the 

MoS2. The parameters examined were the surface composition, the hardness and the roughness of the substrates. 

Crystalline MoS2 was formed on the stainless steel surfaces with higher Cr composition and lower hardness. 

Furthermore, the quality of the MoS2 crystal improved when the substrate had less surface roughness. The results 

indicate that the crystal growth of MoS2 can be optimized by the choice of substrate, particular with regard to the Cr 

content and the surface roughness, and the friction conditions. 
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Introduction 

Because the physical and chemical properties of 2D materials are 
di9erent from their bulk counterparts, the interest in these materials 
has, in recent years, been on the increase [1]. Ue optoelectronic 
properties of two dimensional (2D) transition metal dichalcogenides 
(TMDC) make them promising materials for future devices [2,3]. 
Molybdenum disulfide is one type of TMDC. 

Monolayers of MoS2 semiconductor can be used for high speed, low 
power transistors [4,5], superconductors [6,7] and as highly active 
catalysts [8]. Ue bandgap of MoS2 depends on the number of layers. 
As the number of layers decreases to a monolayer, the bandgap 
increases from 1.29 eV (indirect) to 1.8 eV (direct) as it approaches the 
2D state [9,10]. MoS2 having an ultrathin atomic layered structure is 
an interesting semiconductor material for a new generation of devices. 
Field e9ect transistors (FETs) with lower power consumption and 
higher frequency operation can be realized [4]. For these studies, the 
MoS2 crystals were prepared by two methods. One was mechanical 
exfoliation [11,12], the other was chemical vapor deposition (CVD) 
[13-15]. On the other hand, layered MoS2 has also been used as a 
lubricant [16]. Uis reduces friction at the interface between 
mechanical parts, where each layer slides easily under a small shear 
stress as a result of the weak van der Waals bonding force of the layered 
structure [17]. At the interface, MoS2 is mechanochemically 
synthesized from molybdenum dialkyl dithiocarbamate (MoDTC) in 
synthetic oil [18]. A low friction interface is realized in well-stacked 
layered MoS2. Uis reduction reaction is used to reduce piston ring 
friction in car engines. We previously proposed a novel method in 
which the friction is used to induce the growth of 2D layered MoS2 
crystals [19]. In our previous study, we measured the XRD di9raction, 

Raman and photoluminescence (PL) spectra of MoS2 crystals grown at 
the interface between SUS430 stainless steel and high carbon 
chromium bearing steel (SUJ2). Ue structure of the MoS2 was layered 
with the c-axis perpendicular to the surface. Ue thickness was N- 
layers (N>6). Ue PL peak of the neutral exciton emission was 
observed at RT, which suggests that the crystalline quality was good 
with low impurities and defects [20]. Such MoS2 crystals can be used 
for fabricating semiconductor devices. In this study, the e9ect of the 
surface composition, the hardness and the roughness of the stainless 
steel substrate on the friction induced crystal growth of 2D layered 
MoS2 was investigated in order to explore the conditions needed to 
improve the crystalline quality as well as enlarge the size of the crystals. 

 

Materials and Methods 

Ue friction induced crystal growth was conducted using a ball on 
plate method on a rotating stage. Ue details have been described in 
one of our previous studies [19]. Six di9erent stainless steel substrates 
were examined: SUS304, SUS316, SUS403, SUS405, SUS420 and 
SUS430. Ue surface of each substrate was mechanically polished by 
#400 paper. For SUS430, two substrates were prepared with di9erent 
RMS surface roughnesses of 0.02 µm and 0.002 µm by ultra-precise 
polishing (TDC Corporation). Ue ball was 8 mm in diameter and 
made of high carbon chromium bearing steel (SUJ2), and had a surface 
roughness of 0.008 µm. Uese roughnesses were measured using a 3D 
laser microscope (Shimadzu OLS4100). Ue friction experiments were 
performed under a load of 10 N with a sliding speed of 2.5 mm/s for 30 
min. A synthetic oil, poly-α-olefin (PAO), at a temperature of 80°C was 
used in the experiments. Uis was blended with the molybdenum 
dithiocarbamate (MoDTC) and calcium sulfonate. For each stainless 
steel substrate, the formation of MoS2 was analyzed using X-ray 
di9raction measurements (Bruker D8 Advance) with Cu Kα radiation 
(λ=0.154 nm). For the SUS430 substrates, room-temperature μ-Raman 
spectra were measured in the back-scattering configuration using a 
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Figure 2: XRD patterns of SUS430 substrates with surface 
roughnesses of 0.02 µm and 0.002 µm, respectively. 

JASCO NRS-5100 spectrometer aIer rinsing the substrates in alcohol. 
Excitation was by a 0.8 mW SHG YVO4 laser operating at 532 nm. Ue 
laser was focused onto the substrate by a 100×objective lens. Ue beam 
spot size was about 1 μm in diameter, which is close to the di9raction 
limit defined by the laser wavelength. Ue spectral resolution was 0.4 
cm-1. 

 

Results and Discussion 

Figure 1(a) shows XRD patterns for the sliding parts of the stainless 
steel substrates aIer the friction experiments. A di9raction peak at 
2θ=14.6° appears for the SUS304 and SUS430 substrates, which 
corresponds to the (002) plane of hexagonal MoS2 (JCPDS card No: 
75-1539), indicating that crystalline MoS2 has been formed on these 
substrates. A distribution map of the Cr content and surface hardness 
of the substrates is plotted in Figure 1(b). 
 
 
 
 

 
Ue materials on which MoS2 is most easily formed, SUS304 and 

SUS430, have higher Cr content and lower surface hardness than the 
other types of steel. It is thought that chromium acts as a reductant to 
enhance the formation of MoS2 from MoDTC. Ue lower hardness of 
the SUS430 and SUS304 substrates means the gap between the two 
metal surfaces is very narrow which enhances the formation of MoS2 
due to the dynamic change in pressure and temperature of the MoDTC 
in PAO. Uis reduction reaction mechanism of MoDTC to MoS2 is 
discussed below. Ue XRD patterns of SUS430 substrates with surface 
roughnesses of 0.02 µm and 0.002 µm are shown in Figure 2. 

 

Ue di9raction peak for MoS2 with Ra=0.02 µm is broader and 
located at a higher angle than that for MoS2 with Ra=0.002 µm. Ue 
inter-planar spaces between the layers of MoS2 grown on SUS430 with 
surface roughnesses of 0.02 and 0.002 µm were calculated to be 5.99 Å 
and 6.03 Å, respectively, using Bragg's equation. Ue di9erence is due 
to the larger compressive strain in the MoS2 crystal on the surface with 
Ra=0.02 µm arising from the smaller contact area and greater number 
of contact points with the SUJ2 ball. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1(a): XRD patterns for the sliding part of the stainless steel 
substrates aIer the friction experiments. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1(b): Distribution map of the stainless steel substrates 
showing the Cr content and surface hardness. 
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Conclusion 

Ue e9ects of the composition, hardness and roughness of the 
surfaces of stainless steel on the friction induced crystal growth of 2D 
layered MoS2 were investigated. XRD measurements indicated that 
MoS2 crystals grew on stainless steel substrates with high Cr content 
and low surface hardness. Uen load in the experiments was 10 N, and 
the sliding speed and temperature in the oil-bath were 2.5 mm/sec and 
80°C, respectively. Smaller roughness improved the crystalline quality 
of the MoS2 crystal, which was confirmed by XRD di9raction and 
Raman spectroscopy measurements. Uese results will prove useful for 
optimizing the friction conditions and the quality of MoS2 crystals 
grown by the friction induced method on stainless steel surfaces. 

 

 
 
 
 
 
 
 

 
Figure 3 shows Raman spectra of friction induced MoS2 crystals 

grown on SUS430 with surface roughnesses of 0.02 µm and 0.002 µm 
at room temperature, in which two Raman vibrational modes, E1

2g and 
A1g, appear around 383 cm-1 and 410 cm-1, respectively. Uese modes 
are attributed to in-plane vibrations of molybdenum and sulfur atoms 
and out-of-plane vibrations of sulfur atoms, respectively [21-23]. Ue 
distance of 25 cm-1 between these two Raman frequencies indicates 
that the thickness is N-layers (N>6) of MoS2. Ue full width at half 
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