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Abstract
Federated Learning and Transfer Learning are 
two distinct machine learning methodologies 
that have typically been applied independently. 
However, combining these approaches offers 
the potential to deliver significant value across 
various industries. This paper systematically 
reviews existing literature on both technologies 
and introduces a novel framework that integrates 
Federated Learning and Transfer Learning to 
improve machine learning model performance. 
The proposed framework can be utilized in a range 
of applications, including healthcare (for detecting 
heart attacks, cancer, and strokes), retail (for 
predicting customer churn), and industrial sectors 
like Power Grids, Oil & Gas and Manufacturing 
(for identifying equipment failures, grid loads etc). 
By merging these technologies, this framework 
enhances model accuracy and scalability while 
ensuring data privacy in distributed environments.

or servers, with data remaining on the local devices 
instead of being shared or centralized [1,4,5]. In FTL, 
the goal is to allow models at different locations or 
with different datasets to learn collaboratively without 
sharing data. This approach is particularly useful 
when datasets from different organizations (such 
as companies or institutions) are related but cannot 
be shared due to privacy concerns or regulatory 
restrictions. For example, different insurance 
companies can contribute to a shared model without 
sharing proprietary data but can still benefit from the 
insights across their datasets.

The advantage of using these two technologies 
together is that it brings the best of both approaches. 
A model trained using TL can be further enhanced 
by FL, enabling it to benefit from diverse, distributed 
datasets without requiring direct data sharing. This 

Keywords:  FL, TL, Architecture, Federated TL 

Introduction
Federated Learning (FL) and Transfer Learning 
(TL) are often confused as being the same concept, 
although they have distinct differences despite some 
similarities in reusing knowledge across tasks. TL 
involves using a pre-trained model (typically trained on 
a large dataset) and fine-tuning or adapting it to a new, 
related task or domain [1-3]. This allows the model 
to leverage knowledge gained from a source task to 
improve performance on a target task, especially when 
the target task has limited data. For example, a model 
trained on ImageNet (a large dataset of images) can 
be fine-tuned to classify medical images. Federated 
TL (FTL) is a combination of FL and TL. In FL, models 
are trained across multiple decentralized devices 
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banks to collaboratively train models on transaction 
data to detect fraud or assess credit risk, without 
sharing actual customer data [6,7]. TL allows pre-
trained models from one bank to be adapted to new 
regions or product offerings [6,7]. For instance, a pre-
trained credit scoring model (TL) can be shared and 
adapted across different banks or regions. Using FL, 
banks can refine the model using their local customer 
data, ensuring the model reflects the credit behavior of 
their clients while maintaining data privacy compliance.

In the retail sector, FL helps companies personalize 
product recommendations by training models across 
multiple retail outlets or online platforms without sharing 
customer data [8]. TL allows retailers to use pre-trained 
models for general customer behavior and adapt them 
to specific demographics or regions. For example, a 
pre-trained model for general customer purchasing 
behavior (TL) can be fine-tuned for specific stores or 
regions using FL. Each retail store can locally train 
the model on its customer data to create personalized 
recommendations without sharing purchase histories 
with other stores or a central server.

Several pre-trained models are available from leading 
cloud providers. For healthcare, examples include 
Amazon HealthLake [9], which uses machine learning 
to extract meaningful information from healthcare 
data, and Google Cloud’s AutoML [10], which 
provides models for medical image classification 
and natural language processing for clinical text. In 
retail, Amazon Personalize [11] offers individualized 
product recommendations, while Google Cloud’s 
Recommendations AI [10] provides tailored shopping 
recommendations for e-commerce platforms. 
In financial services, Amazon Fraud Detector is 
specialized in identifying fraudulent activities based 
on transaction data, while Google Cloud offers tools 
for building fraud detection systems. These models 
can be used as the initial TL models, after which 
specific FL can be applied to tailor them to individual 
organizations.

In conclusion, combining FL and TL offers significant 
potential across industries by integrating the privacy-
preserving capabilities of FL with the knowledge 
reuse of TL. This hybrid approach allows models to 

approach leverages pre-trained knowledge from 
a source domain while simultaneously training the 
model across multiple organizations or devices in a 
privacy-preserving manner, leading to improvements 
in accuracy, generalization, and applicability in 
scenarios with sensitive or proprietary data. Imagine 
a model pre-trained on a specific dataset within an 
industry, which is then fine-tuned to be organization 
specific. FL can further amplify this learning by allowing 
the model to train on data from multiple organizations, 
resulting in a highly accurate model which is one of 
the most innovative techniques in machine learning.

In healthcare, privacy is of utmost importance due 
to regulations like HIPAA and GDPR [1,4]. FL allows 
hospitals and medical institutions to collaboratively 
train models on patient data without sharing sensitive 
information, ensuring privacy [1]. TL can be used to 
apply pre-trained models (such as those trained on 
large, public medical datasets) to specific tasks, like 
diagnosing rare diseases or analyzing medical imaging 
data [4]. For instance, a pre-trained model for general 
image recognition (TL) can be fine-tuned to recognize 
brain tumors in MRI scans using FL across hospitals 
[1]. Each hospital can adapt the model using its local 
data without sharing patient information, resulting in 
a high-performance model while maintaining data 
privacy.

In the insurance industry, companies have vast 
amounts of private data, such as claims data and 
customer profiles. FL allows different branches or 
companies to collaboratively train models to detect 
fraudulent claims or assess risks without exposing 
sensitive customer information [3]. TL helps these 
companies quickly adapt models pre-trained on 
general insurance data to specific local markets or 
types of insurance products. For example, a global 
insurance company can use a fraud detection model 
trained on generic fraud cases (TL) and refine it for 
local regions using FL. Local branches can use their 
own claims data to update the model without sharing 
sensitive customer information with other branches or 
regions.

In the banking sector, privacy and security are critical 
due to regulations like PSD2. FL enables different 
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be collaboratively trained on decentralized datasets 
without compromising data privacy, while also 
adapting pre-trained models to specific tasks in 
different domains. The integration not only enhances 
the accuracy and generalization of models but also 
ensures compliance with regulatory standards, 
making it particularly useful in sensitive sectors such 
as healthcare, insurance, finance, and retail. As 
industries continue to evolve, this combined approach 
will play a pivotal role in building scalable, secure, and 
efficient machine learning systems.

Literature review 
FL and TL have been extensively utilized across 
industries to enhance privacy, boost model efficiency, 
and adapt models to new tasks. FL enables decentralized 
model training by distributing computation across 
multiple devices or institutions, ensuring that sensitive 
data remains localized. TL, meanwhile, facilitates 
the use of pre-trained models to transfer knowledge 
from one domain to another, improving performance 
and reducing the reliance on large datasets for new 
tasks. Through a comprehensive literature review, 
we explored various applications of FL and TL across 
industries like healthcare, autonomous systems, IoT, 
smart manufacturing, and more. Studies indicate that 
integrating FL and TL improves accuracy, reduces 
training time, and enhances privacy, making them vital 
tools for modern AI applications. 

Authors in [1] integrated FL and TL for brain tumor 
classification using MRI images. FL was used to 
decentralize model training across multiple institutions 
while ensuring data privacy. TL, using a pre-trained 
VGG16 CNN, improved the model’s performance 
by leveraging knowledge from large datasets. The 
model achieved high accuracy, precision, and recall 
rates, with an overall accuracy of 98%. This method 
outperformed traditional approaches, maintaining 
data privacy and ensuring accurate classification of 
brain tumors.

As part of their work in [2], the authors developed 
a method called PrivateKT, integrating FL with 
differential privacy. FL allowed the decentralized 
training of models, while knowledge was transferred 

via small, carefully selected public datasets to 
ensure privacy. TL leveraged these public datasets to 
enhance model training efficiency without accessing 
sensitive data. Experimental results demonstrated 
that PrivateKT reduced performance degradation 
in privacy-constrained environments, achieving up 
to 84% of the performance of centralized learning 
models, even under strict privacy measures. The 
model performed well on tasks like digit classification, 
disease prediction, and pneumonia detection.

As part of [3], the authors reviewed the integration 
of FL and TL. FL was utilized for decentralized 
model training, ensuring privacy by preventing data 
sharing across participants. TL enabled knowledge 
transfer between participants, minimizing data 
distribution disparities and enhancing model utility. 
The authors demonstrated that combining these 
methods mitigated challenges like data and system 
heterogeneity. Experimental results showcased 
improved performance in scenarios involving multiple 
domains and incremental data.

As part of their research, the authors in [4] employed 
FL combined with TL to enhance privacy-preserving 
breast cancer classification. FL enabled collaborative 
model training across multiple medical centers 
while ensuring data privacy. TL was integrated with 
a pre-trained ResNet model to fine-tune breast 
cancer classification tasks. The model achieved a 
classification accuracy of 98.8%, with an F1-score of 
98.2% and a computational time of 12.22 seconds. 
This approach demonstrated improved generalization 
across diverse datasets without compromising data 
privacy.

As part of their research [5], the authors employed 
federated TL to enhance flow-based traffic 
classification. FL was used to collaboratively train 
models across different silos while preserving data 
privacy. TL allowed the transfer of knowledge from 
a source model to a target model, improving both 
accuracy and training efficiency. The source model 
was trained for application-level traffic classification, 
while the target model was trained for VPN/non-VPN 
identification. The target model outperformed the 
baseline model in validation accuracy (0.90 vs. 0.85) 
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and training time.

Authors in [12] proposed FTLIoT, a Federated TL 
(FTL) framework to enhance security in IoT networks. 
FL was employed to allow multiple IoT devices to 
collaboratively train intrusion detection models without 
sharing raw data, ensuring privacy. TL enabled the 
model to adapt to new tasks quickly by leveraging 
previously trained models. Experimental results 
showed that using CNN and DNN algorithms led 
to an accuracy improvement of 1.44% and 5.55%, 
respectively. The model also reduced training time by 
36.11% for CNN and 38.62% for DNN.

Authors in [13] proposed a blockchain-enabled 
Federated TL (FTL) schema for autonomous vehicular 
systems to reduce latency and enhance security. The 
FTL framework enabled distributed learning across 
edge devices, minimizing data transfer and improving 
model accuracy. Blockchain integration ensured 
privacy and security in the communication process. 
The experimental results demonstrated better 
scalability, reduced latency, and improved data rate 
efficiency in vehicular networks. The proposed model 
outperformed traditional methods, showing a higher 
reliability in autonomous vehicular environments.

As part of [14], the authors introduced TinyFedTL, 
the first open-source implementation of federated 
TL (FTL) on resource-constrained IoT devices. FL 
enabled decentralized model training on devices with 
limited memory (less than 1MB), while TL allowed the 
use of pre-trained models for new tasks. The system 
was tested on the Arduino Nano 33 BLE Sense with 
CIFAR-10 datasets. Results showed that TinyFedTL 
maintained constant memory usage while learning 
continuously, using only 210KB of dynamic memory 
and reducing training time compared to existing 
models.

As part of their study, the authors in [15] proposed a 
hierarchical federated TL (HFTL) model for secure and 
efficient fault classification in additive manufacturing. 
FL was used to enable distributed training across 
multiple servers while preserving privacy. TL was 
applied to adapt pre-trained models for fault detection 
in 3D printing. Experimental results demonstrated 
that HFTL reduced training time by 24%, improved 

accuracy by 45%, and increased F1-scores by 59% 
on non-IID data compared to traditional methods. 
The model efficiently handled distributed data and 
improved performance in the fault classification of 
3D-printed products.

As part of their research [16], the authors introduced 
a novel federated TL framework called CPFTL-CGAN 
for smart manufacturing. FL enabled decentralized 
model training across different clients, while TL allowed 
knowledge transfer from a pre-trained model to a 
target task. The collaborative generative adversarial 
network (CGAN) generated high-quality synthetic 
data to facilitate TL without compromising data 
privacy. Experimental results demonstrated that the 
proposed framework improved classification accuracy 
by up to 93.6%, with enhanced precision, recall, and 
F1 scores, while significantly reducing communication 
rounds compared to baseline methods.

As part of their research, the authors [17] developed 
a hashgraph-based FL approach (HFLA) for securing 
multi-domain 5G networks. FL was used to train models 
across decentralized devices without compromising 
data privacy. The hashgraph technology ensured 
robust protection against Sybil, DDoS, and other 
attacks by utilizing asynchronous Byzantine fault 
tolerance. Experimental results from the Federated 5G 
testbed showed that the proposed method effectively 
prevented poisoning and membership inference 
attacks while maintaining high model accuracy and 
training efficiency.

As part of [6], the authors proposed a digital currency 
system that integrates FL and TL to enhance transaction 
privacy while maintaining regulatory oversight. FL was 
used to allow multiple nodes to collaboratively train 
models without sharing sensitive transaction data, 
preserving privacy across different participants. TL 
enabled the adaptation of pre-trained models to new 
environments, reducing the time and data needed 
for implementation in different contexts. The authors 
demonstrated that the system successfully protected 
transaction amounts using homomorphic encryption 
and offered controllable anonymity, meeting both 
privacy and regulatory requirements.

As part of [7], authors have developed a graph mining 
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approach for detecting suspicious transactions, 
specifically those related to money laundering. The 
method built a model that identified subgraphs of 
transactions based on fuzzy parameters, which 
captured both transaction values and their structural 
relationships. FL was used to aggregate data from 
various financial institutions without revealing 
sensitive information, and TL helped adapt models 
to new transaction data. The experimental results 
showed that the method effectively detected illegal 
transactions while minimizing false positives, 
improving the efficiency of human review processes.

In research [8], the authors introduced a FL approach 
to detect data hidden in mobile application icons 
delivered through web and multiple stores. FL was 
used to allow distributed nodes to train models on local 
datasets, preserving data privacy while identifying 
steganographic threats. TL facilitated adapting the 
models to different types of encoding schemes like 
Base64 and zip compression. Experimental results 
showed that the federated approach achieved 
detection performance comparable to centralized 
models, with an AUC of 97.1% for plain text and 
significant improvements in detecting obfuscated 
payloads.

Summary
Based on the reviews performed, FL and TL have 
demonstrated significant potential in medical 
image classification, such as brain tumor and 
breast cancer detection. These methods enable 
institutions to collaborate on improving diagnostic 
models while maintaining patient data privacy. Pre-
trained models like VGG16 and ResNet have been 
critical in enhancing classification accuracy and 
efficiency. In the automotive and smart manufacturing 
sectors, FL and TL have shown improvements in 
fault detection, operational efficiency, and security. 
Autonomous vehicular systems benefited from 
reduced latency and improved accuracy, while smart 
manufacturing processes saw higher performance in 
fault classification. Technologies such as blockchain 
and generative adversarial networks (GANs) further 
bolstered privacy and security. In 5G networking, FL 

and TL help safeguard networks against DDoS and 
Sybil attacks, with hashgraph technology ensuring 
robust protection while maintaining model accuracy 
and training efficiency. The benefits observed 
in these reviews include improved data privacy, 
better model accuracy, reduced training time, and 
enhanced scalability across industries like healthcare, 
automotive, smart manufacturing, and 5G networking.

A framework for transfer learning and federated 
learning

As part of this section, we will discuss a novel 
framework that combines TL and FL to enhance 
prediction accuracy while maintaining privacy-
preserving data processing. This approach leverages 
pre-trained models for knowledge transfer across 
different domains, improving the model’s efficiency 
without needing large datasets, and ensuring that 
sensitive data remains localized across institutions. 
The privacy-preserving aspect is achieved through FL, 
where data is not shared across clients, but models 
are trained collaboratively.

(Figure 1) illustrates the five tasks involved in this 
process:

1. Model initialization using TL: A global machine 
learning model (base ML Model) is trained using 
publicly available datasets.

2. Model distribution: The global model is then shared 
with each Site unit.

3. Local model training: Each site trains its local model 
using local data stored locally in its database.

4. Parameter update: The locally trained models 
update their parameters, which are encrypted and 
sent back to the server to create an updated global 
model. No raw data (e.g., local data) is shared, 
ensuring privacy.

5. Personalized model: TL is applied to fine-tune the 
global model for each site, resulting in personalized 
settings based on their local data.
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 TL initialization

The process begins with the application of TL to 
initialize the models at each local node (e.g., healthcare 
institution or device). The key steps are:

Pretrained model setup

A global model, trained on a large dataset from a source 
task, such as a general health or diagnostic dataset, is 
distributed to each local node. This pretrained model 
already contains features that are likely generalizable 
across different health conditions.

The model’s initial parameters, θ^ pretrained, are 
shared with all participating nodes.

θ^((0) ) local=θ^ pretrained

Local fine-tuning

Each node fine-tunes the global pretrained model 
on its local dataset, which contains data specific to 
the node’s medical practice or region (e.g., patient 
demographics or localized health issues). This step 
adjusts the model parameters to better suit the node’s 
specific task.

The objective is to minimize the local loss function Li 
with respect to the parameters θi (where i represents 
the node):

 

Where η is the learning rate and ∇Li is the gradient of 
the local loss function.

FL for collaborative model training

Once TL has enabled local fine-tuning of the 
pretrained model, the system moves to the FL phase 
to collaboratively improve the model across all nodes 
without sharing raw data.

Local model training (on-device training): Each 
node continues training the locally fine-tuned model 
using its private dataset. No data is shared with 
other nodes or the central server. Instead, each node 
updates its local model’s parameters based on its 
specific data, ensuring data privacy and security.

The goal is to minimize the local objective function at 
each node iii:

 

Where:

• Ni is the number of data points at node i,

Figure 1. This combination of FL and TL allows the system to balance global model performance with individual 
customization, maintaining privacy throughout the data sharing process.
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• L(θi;Xj, Yj) is the local loss function using local 
data (Xj,yj).

Model aggregation at central server: After a round 
of local training, the updated model parameters (not 
the data) from each node are sent to the central server 
for aggregation. This is typically done using Federated 
Averaging (FedAvg), where the server computes the 
weighted average of the local models based on the 
size of their local datasets.

The global model parameters are updated as follows:

 

Where:

• K is the number of nodes,

• N is the total number of data points across all 
nodes,

• θ^((t) ) i represents the model parameters from 
node i at iteration t.

Global model distribution: After aggregation, the 
updated global model is sent back to all local nodes 
for further fine-tuning based on local data. This creates 
an iterative loop where the global model benefits from 
the knowledge learned at each node.

Iterative training and model convergence

The above steps are repeated over multiple iterations:

• Local nodes continue to fine-tune their models on 
the local datasets.

• The central server aggregates the updated models 
after each iteration.

• The global model gradually converges, learning 
from the diversity of local datasets across all 
nodes, ensuring that the final model generalizes 
well across different healthcare settings.

Final Model Deployment
After several rounds of aggregation and local fine-
tuning, a robust global model is obtained. This model 

can then be deployed across all participating nodes 
to provide a high-quality second health opinion for 
patients, benefiting from the collective knowledge 
learned from different healthcare institutions.

Advantages
The integration of FL and TL brings numerous 
advantages to industries like healthcare, retail, 
insurance and finance, where data privacy and 
efficiency are critical. By enabling collaborative 
learning across multiple institutions without sharing 
sensitive data, this approach fosters innovation while 
safeguarding privacy. Below are some of the key 
benefits:

• Data privacy: No raw data is shared between 
nodes or with a central server. Only model 
updates are exchanged, ensuring the protection 
of sensitive information.

• Knowledge sharing: FL allows all nodes to benefit 
from diverse data across multiple healthcare 
providers, improving model generalization.

• Specialized local models: TL ensures models are 
tailored to local data needs while still leveraging 
insights from a global model.

• Efficient learning: TL accelerates model 
adaptation to new tasks, minimizing the need for 
large labeled datasets.

• Collaboration: Enables institutions to collaborate 
and train high-performing models without exposing 
sensitive data directly.

• Cost-Effectiveness: Reduces the requirement 
for extensive data collection efforts by allowing 
pre-trained models to be fine-tuned locally.

• Cyber defence: Building nationwide or regional 
cyber-defence models by sharing threats and 
malicious attempt patterns across industries, 
without exposing the actual types and strategies 
of defence system design. 

By beginning with TL, which fine-tunes a pre-trained 
model on specific local datasets, and subsequently 
applying FL, organizations across various industries 
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can collaboratively enhance model performance 
while safeguarding sensitive data. This approach 
enables the development of high-performing models 
that capitalize on knowledge from diverse, distributed 
data sources, making it ideal for applications like fraud 
detection in finance, personalized recommendations 
in retail, or risk assessment in insurance. The process 
ensures that proprietary or private data remains 
secure, while still benefiting from the collective insights 
of all participating entities.

Discussion
The integration of FL and TL represents a significant 
advancement in the field of machine learning, 
particularly in areas where data privacy, scalability, and 
domain adaptation are crucial. These technologies, 
traditionally employed independently, have been 
successfully merged in various domains such as 
healthcare, finance, retail, and manufacturing, where 
data sharing across organizations is restricted due to 
privacy or regulatory concerns. A significant body of 
research has demonstrated the potential of combining 
these two approaches into Federated TL (FTL). For 
example, in healthcare, Federated TL (FTL) was 
used for decentralized brain tumour classification 
using MRI data [1], achieving a high accuracy of 98% 
while preserving patient privacy. Similarly, authors in 
[2] developed the PrivateKT framework for privacy-
preserving tasks like fraud detection, with up to 84% 
of centralized model performance in constrained 
environments. In IoT, FTL was applied for intrusion 
detection, leading to an accuracy improvement of up 
to 5.55% and reduced training time by 36.11% [12]. 
And a blockchain-enabled FTL was proposed for 
autonomous vehicular systems, improving latency, 
scalability, and security [13]. 

In conclusion, by starting with TL to fine-tune models 
based on localized data and proceeding to FL to 
aggregate knowledge without sharing data, this 

integrated approach is poised to transform industries 
by offering solutions that are both highly accurate and 
privacy-compliant across distributed environments.

Conclusion 

FL and TL offer significant benefits by enhancing 
model accuracy, preserving data privacy, and enabling 
collaboration across industries. The combination 
of these technologies has been shown to improve 
outcomes in sectors ranging from healthcare to 
finance, manufacturing, and networking. The ability to 
leverage pre-trained models while maintaining privacy 
makes this approach an ideal solution for modern AI 
applications in privacy-sensitive environments.
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