

Comparison Between Using (Technetium-99m (^{99m}Tc) \rightarrow SPECT Imaging and (Fluorine-18 (¹⁸F) \rightarrow PET Imaging

In nuclear medicine, the main widely used radioisotopes for imaging are:

- 1. Technetium-99m (⁹⁹mTc) for SPECT (Single Photon Emission Computed Tomography)
- 2. Fluorine-18 (¹⁸F) for PET (Positron Emission Tomography).

Below is a comparative analysis of their roles in nuclear medicine:

Review Article

Hasna Bashir AlBandar^{*}

*Senior Specialist medical physicist, Prince Sultan Military Medical City, Riyadh, KSA

***Correspondence:** Hasna Bashir AlBandar, Senior Specialist medical physicist, Prince Sultan Military Medical City, Riyadh, KSA,

Email: halbander@psmmc.med.as

Received: 03 September, 2024; Accepted: 27 September, 2024; Published: 08 October, 2024

Copyright: © 2024 Hasna Bashir AlBandar. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

SPECT Scan

Figure 1: SPECT Scan and PET Scan

Feature	Technetium-99m (⁹⁹ mTc) – SPECT	Fluorine-18 (1°F) – PET
Decay mode	Gamma emission (140 keV)	Positron emission ($\beta\Box$, 0.64 MeV)
Detection	Uses a collimator for detecting gam- ma photons	Detects annihilation photons (511 keV) from positron decay
Resolution	Moderate (6–10 mm)	Higher (~3–5 mm)
Sensitivity	Lower than PET	Higher sensitivity
Attenuation	More susceptible to attenuation	Less attenuation due to higher ener- gy
Sensitivity	Lower than PET	Higher sensitivity
Attenuation	More susceptible to attenuation	Less attenuation due to higher ener- gy

Imaging modality & Physics

Table 1. Comparison of Features between Technetium-^{99m}Tc-SPECT and Fluorine 18 ¹⁸F-PET

Figure 2. Scan Reconstruction of SPECT(L) and PET(R)

Radiopharmaceuticals & Applications

Feature	⁹⁹ ™Tc-SPECT Imaging	¹⁸ F-PET Imaging
Common tracers	^{99m} Tc-MDP (bone imaging), ^{99m} Tc-sestamibi (cardiac perfusion), ^{99m} Tc-PSMA, ^{99m} Tc-DMSA (renal imaging)	¹⁸ F-FDG (glucose metabolism), ¹⁸ F-PS- MA, ¹⁸ F-DOPA, ¹⁸ F-NaF (bone imaging)
Theranostic applications	Used in SPECT imaging to select candidates for targeted radiotherapy (e.g., ^{99m} Tc-PSMA for prostate cancer leading to ¹⁷⁷ Lu-PSMA therapy)	Used in PET imaging for staging and guiding targeted radiotherapies (e.g., ¹⁸ F-FDG for metabolic tumors, ¹⁸ F-PS- MA for prostate cancer)
Organ/system focus	Bone, kidney, heart, tumors	Oncology (most cancers), neurology, cardiology

 Table 2. Comparison of Radiopharmaceuticals & Applications Features between Technetium-99mTc-SPECT and Fluorine 18 ¹⁸F-PET

Figure 3. Evaluation of musculoskeletal sarcomas by using ⁹⁹^mTc-SPECT Imaging and ¹⁸F-PET Imaging [1] Radiation dose & Safety

Feature	^{99m} Tc-SPECT Imaging	¹⁸ F-PET Imaging
Half-life	6 hours (suitable for transport and use in nuclear medicine)	110 minutes (shorter, requiring on-site or nearby cyclotron)
Radiation dose	Moderate	Slightly higher due to higher energy photons
Patient safety	Safer for frequent scans	Higher radiation exposure but still accept- able for clinical use
Feature	99mTc-SPECT Imaging	¹⁸ F-PET Imaging
Half-life	6 hours (suitable for transport and use in nuclear medicine)	110 minutes (shorter, requiring on-site or nearby cyclotron)

Table 3. Comparison of Radiation dose & Safety Features between Technetium-99mTc-SPECT and Fluorine 18 18F-PET

Figure 4. Nuclear medicine VS Radiology

Pros and Cons

Aspect	^{99m} Tc-SPECT	¹⁸ F-PET
Pros	Widely available, cost-effective, good for bone and organ imaging	Higher resolution, better sensitivity, superior quantification
Cons	Lower sensitivity, longer scan times, limited quanti- fication	Expensive, requires cyclotron, limited availability

Table 4. Pros and Cons between Technetium-99mTc-SPECT and Fluorine 18 18F-PET

Conclusion

- ^{99m}Tc-SPECT remains a cost-effective, widely available tool for molecular imaging, particularly in bone scanning and functional imaging.
- ¹⁸F-PET provides superior imaging quality, sensitivity, and quantification, making it preferable for

oncology, neurology applications.

While SPECT is more accessible, PET is the gold standard for high-resolution, quantitative imaging. The choice between them depends on clinical needs, in-frastructure, and cost considerations.

References

 Garcia, R, Kim EE, Wong FC, and Korkmaz M, et al. "Comparison of fluorine-18-FDG PET and technetium-99m-MIBI SPECT in evaluation of musculoskeletal sarcomas." J Nucl Med. 37(1996):1476-9.

Citation: Hasna, Bashir AlBandar. "Comparison Between Using (Technetium-99m (^{99m}Tc) \rightarrow SPECT Imaging and (Fluorine-18 (^{18}F) \rightarrow PET Imaging." J Fam Med Clin Res (2024): 104 DOI: 10.59462/JFMCR.1.1.104