

Osman Adiguzel

Firat University
Turkey

Shape reversibility and the role of deformation temperature in memory behavior of shape memory alloys

Abstract:

Shape memory effect is a temperature dependent phenomenon exhibited by certain alloy systems called shape memory alloys. These alloys take place in the class of advanced smart materials, with the response to the variation of temperature and external conditions. This phenomenon is initiated with thermomechanical processes on cooling and deformation and performed thermally on heating and cooling, with which shape of the material cycles between original and deformed shapes in reversible way. Therefore, this behavior is called thermoelasticity. Strain energy is stored in the material and releases on heating by recovering the original shape. The origin of this phenomenon lies in the fact that the material changes its internal crystalline structure with changing temperature. Thermoelasticity is governed by crystallographic transformations thermal and stress induced martensitic transformations. Thermal induced martensitic transformation occurs on cooling with cooperative movements of atoms by means of lattice invariant shears in $<110>$ -type directions on the $\{110\}$ - type planes of austenite matrix, along with lattice twinning, and ordered parent phase structures turn into the twinned martensite structures, and the twinned structures turn into the detwinned structures by means of stress induced martensitic transformation, with stressing material in the martensitic condition. These alloys exhibit another property called superelasticity, which is performed by stressing and releasing material in elasticity limit at a constant temperature in parent phase region, and shape recovery is performed simultaneously upon releasing the applied stress, by exhibiting elastic material behavior. Superelasticity is performed in non-linear way; stressing and releasing paths are different in the stress-strain diagram, and hysteresis loop refers to energy dissipation. Superelasticity is also result of stress induced martensitic transformation and ordered parent phase structures turn into detwinned martensite structure with stressing. The twinning occurs with internal stresses, while detwinning occurs with the external stresses. Shape memory effect is performed in a temperature interval after first cooling and stressing process, whereas superelasticity is performed mechanically in a constant temperature in parent phase region, just over the austenite finish temperature. Deformation at different temperature exhibits different behavior beyond shape memory effect and superelasticity. Copper based alloys exhibit this property in metastable β -phase region, which has bcc-based structures. Lattice invariant shear and twinning is not uniform in these

alloys and gives rise to the formation of complex layered structures. The layered structures can be described by different unit cells as 3R, 9R or 18R depending on the stacking sequences on the close-packed planes of the ordered lattice. The unit cell and periodicity are completed through 18 layers in direction z , in case of 18R martensite, and unit cells are not periodic in short range in direction z . In the present contribution; x-ray and electron diffraction studies were carried out on two solution treated copper based CuZnAl and CuAlMn alloys. Electron and x-ray diffraction exhibit super lattice reflections. Specimens of these alloys were aged at room temperature, and a series of x-ray diffractions were taken at different stages of aging in a long-term interval. X-Ray diffraction profiles taken from the aged specimens in martensitic conditions reveal that crystal structures of alloys change in diffusive manner, and this result refers to the stabilization.

Biography

Adiguzel graduated from Department of Physics, Ankara University, Turkey in 1974 and received PhD- degree from Dicle University, Diyarbakir-Turkey. He studied at Surrey University, Guildford, UK, as a post-doctoral research scientist in 1986-1987, and studied were focused on shape memory effect in shape memory alloys. He worked as research assistant, 1975-80, at Dicle University and shifted to Firat University, Elazig, Turkey in 1980. He became professor in 1996, and he has been retired on November 28, 2019, due to the age limit of 67, following academic life of 45 years. He supervised 5 PhD- theses and 3 M. Sc- theses and published over 80 papers in international and national journals; He joined over 120 conferences and symposia in international and national level as participant, invited speaker or keynote speaker with contributions of oral or poster. He served the program chair or conference chair/co-chair in some of these activities. In particular, he joined in last six years (2014 - 2019) over 60 conferences as Keynote Speaker and Conference Co-Chair organized by different companies. Also, he joined over 180 online conferences in the same way in pandemic period of 2020-2023. Dr. Adiguzel served his directorate of Graduate School of Natural and Applied Sciences, Firat University, in 1999-2004. He received a certificate awarded to him and his experimental group in recognition of significant contribution of 2 patterns to the Powder Diffraction File – Release 2000. The ICDD (International Centre for Diffraction Data) also appreciates cooperation of his group and interest in Powder Diffraction File.